B.COM. PART 1
 CORE CONCEPT OF BUSINESS MATHMATICS \& STATISTICS

Example-37: The heights of ten children selected at random from a given colony had a meat 63.5 cms . And variance 6.25 cms . Test, at 5% level of significance, the hypothesis that the children of the given colony are on the average less than 65 cm . in all. (The value of t for 8 d.f. at 5% level of significance is 2.262)

Solution- 37: Given: $\mathrm{n}=10, \overline{\mathrm{x}}=63.5, \mu=65$, variance $=6.25(\sigma=2.5)$
Null hypothesis: The average height of the children is 65 sm .
$\mathrm{H}_{0}: \mu=65$, Alternative Hypothesis $\mathrm{H}_{1}: \mu<65$
Test Statistic: $\mathrm{t}=\frac{I \overline{\mathrm{x}}-\mu \mathrm{I}}{\sigma} \sqrt{n-1}=\frac{I 63.5-65 \mathrm{I}}{2.5} \sqrt{10-1}=\frac{1.5 * 3}{2.5}=1.8$
Critical Value: 2.262
Decision: The calculated value of t is 1.8 is less than its critical value 2.262 , the null hypothesis is accepted. It means that the average height of the children is 65 cm .

Example-38: Ten individuals are chosen at random from a population and their heights are found to be in inches, 63, $63,64,65,66,69,69,70,70,71$. In the light of these data, discuss the suggestion that the mean height in the universe is 65 inches. (The value of t at 5% for 9 d.f. is 2.262)

Solution- 38: $\overline{\boldsymbol{x}}=\sum \mathbf{x} / \mathbf{n}$

$$
\begin{aligned}
& \bar{x}=670 / 10 \\
& \bar{x}=67 \\
& S=\sqrt{\frac{(\Sigma \mathrm{dx}) 2}{n-1}}
\end{aligned}
$$

$$
S=\sqrt{\frac{88}{9}} \quad S=\sqrt{9.78} \quad S=3.13
$$

Null Hypothesis: $\mathrm{H}_{0}: \mu=65$

\mathbf{x}	$\bar{x}=67$	
63	$\mathbf{d x}(\mathbf{x - \overline { x })}$	$\mathbf{(d x) 2}$
63	-4	16
64	-4	16
65	-3	9
66	-2	4
69	-1	4
79	2	4
70	3	9
$\bar{x}=67$	3	9

Computation of Test Statistics:

$\mathrm{t}=\frac{I \overline{\mathrm{x}}-\mu \mathrm{I}}{S} \sqrt{n}=\frac{I 67-65 \mathrm{I}}{3.13} \sqrt{10}=\frac{2 * 3.16}{3.13}=\frac{6.32}{3.13}=2.019$
Critical Value: 2.262

Decision: The calculated value of t is 2.019 is less than its critical value 2.262, the null hypothesis is accepted. It means that the average height of the children is 65 cm .

